2025年9月8日 星期一

2025 09 08左永安 顧問/講師/委員/宮主/秘書長/永續長/執行長/理事長 訓練機器學習時,會運用到許多不同的機器學習演算法 大致將各種演算法分為 4 種類型: 1.監督式學習 2.非監督式學習 3.半監督式學習 4.強化式學習常見的監督式學習演算法有: 1.線性回歸法(Linear Regression) 2.隨機森林法(Random Forest) 3.單純貝氏分類器(Naive Bayes Classifier) 常見的非監督式學習演算法有: 1. K-平均算法(K-Means Cluctering) 2. 主成分分析(PCA) 3. t-分布隨機鄰近嵌入(t-SNE) 常見的半監督式學習演算法有: 1.生成式對抗網路(Generative adversarial networks) 2.自學習貝氏分類器(Self-trained Naive Bayes classifier) 常見的增強式學習演算法有: 1.Q 學習(Q-Learning) 2.蒙特卡洛學習(Monte-Carlo Learning) 3.SARSA (State–Action–Reward–State–Action)

 AI vs 機器學習 vs 深度學習


AI vs ML vs DL

人工智慧     目標是 讓機器  具有  人類的智慧

機器學習     從  大量資料   中找出規則,以 達到智慧化 目標

深度學習     機器學習 的其中一種方法,模仿人類大腦 的 類神經網路去分析數據資料


訓練機器學習時,會運用到許多不同的機器學習演算法,

例如  線性回歸法、邏輯回歸法  等,

大致將各種演算法分為 4 種類型:

       1.監督式學習

      2.非監督式學習

      3.半監督式學習

      4.強化式學習


(一)監督式學習(Supervised Learning)

       監督式學習定義

       提供機器大量有歷史資料有標記標籤的「輸入」和「輸出」資料配對分類

       例如,我們給機器多組啤酒與葡萄酒的影像,

                   並標記出哪些是啤酒,哪些是葡萄酒。

       機器會學習這些資料,並找出這些影像間的共同特徵,

      以分辨啤酒與葡萄酒。

      常見的監督式學習演算法有:

              1.線性回歸法(Linear Regression)

              2.隨機森林法(Random Forest)

              3.單純貝氏分類器(Naive Bayes Classifier)

      監督式學習例子

       推薦系統就是利用監督式學習,例如 Netflix 的影集推薦

       Netflix 的推薦系統會根據用戶過去的 觀看紀錄  與 行為

       推薦用戶可能會喜歡的節目。


(二)非監督式學習(Unsupervised Learning)

      非監督式學習定義

       在非督導式學習模式中,輸入的資料多是 沒有標準答案、未標記與非結構化

       的資料。機器會使用  所有相關且可存取的資料  來識別  資料間的關聯性,

       並將資料分群。

     常見的非監督式學習演算法有:

         1.  K-平均算法(K-Means Cluctering)

         2.  主成分分析(PCA)

         3.  t-分布隨機鄰近嵌入(t-SNE)

       非監督式學習例子

       非監督式學習   可以解決各種商業問題,有助於企業快速探索大量資料,

       例如  銀行   用來監測交易  是否為   詐欺  或  機器人 活動  等  異常行為。


 (三)半監督式學習(Semi-supervised Learning)

         半監督式學習定義

         半監督式學習則是指,有一部分的資料有標記,另一部分則沒有。

         半監督學習會先用已標記過的資料訓練模型,之後再使用經過訓練的模型

         來標記  那些未標記的資料,直到所有資料 都被標記完成。

        常見的半監督式學習演算法有:

              1.生成式對抗網路(Generative adversarial networks)

              2.自學習貝氏分類器(Self-trained Naive Bayes classifier)

      半監督式學習應用

       半監督式學習經常應用在  語 音 與 語 言 分析例如使用少量的語音數據

       來訓練模型,並利用大量的未標記語音數據來進一步學習,

       提高辨識的準確度


(四)強化式學習(Reinforcement Learning)

          強化式學習定義

          強化式學習  也叫做 增強式學習,指機器在處理資料時,

          會像學生學習一樣,透過「獎勵和懲罰」來學習,每當它做出一個動作,

          就會得到一個「意見回饋」:如果這個動作是好的,它就得到「獎勵」

           反之則是「懲罰」。

          透過不停的試錯,慢慢了解哪些動作是好的,哪些動作是壞的,

          最終找到最有效的處理資料路徑達到最終目標

         常見的增強式學習演算法有:

               1.Q 學習(Q-Learning)

               2.蒙特卡洛學習(Monte-Carlo Learning)

               3.SARSA (State–Action–Reward–State–Action)

         強化式學習應用

         強化式學習最知名的案例,莫過於 2014 年 Google DeepMind 開發的

         下圍棋軟體 AlphaGo。AlphaGo 一開始是使用監督式學習

          不過由於學習與進步的速度太慢了,

          因此改使用強化式學習的方式提高棋力。